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The vacuum gas-phase elimination of P-halocyclopropylsilanes over solid fluoride has been used to 
synthesize cyclopropenes for structural characterization by X-ray crystallography. 

By virtue of the unusual bonding properties that result 
from their high energy content, the cyclopropenes rep- 
resent one of the cornerstones of modern structural 

As part of our program on the synthesis 
and structure of compounds containing this ring s y ~ t e m , ~  
we have used the vacuum gas-solid reaction procedure 
described previously-6 to prepare cyclopropene and some 
of its derivatives for structural characterization by X-ray 
crystallography. The salient feature of these syntheses 
is the use of solid fluoride to effect the gas-phase 
elimination of P-halocyclopropylsilanes. We report these 
results here including the X-ray crystal structure of 
3-vinylcyclopropene (3d). 

The syntheses are presented in Scheme 1. The gas- 
phase route to cyclopropene7z8 provides an attractive new 
synthesis of this hydrocarbon as well as of the derivatives 
3b9 and 3c.lo The yields (65-75%) of 3a-c were deter- 
mined by isolating the cyclopropenes as the Diels-Alder 
adducts of cyc1opentadiene.l' Although derivatives of 
3-vinylcyclopropene are fairly common,12 the parent 
hydrocarbon has not been reported. The desired precur- 
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chromatography. Elimination of 2d over solid fluoride 
provided the desired cyclopropene 3d. 

Our original intent was to derive the structure of 
cyclopropene itself by X-ray crystallography using the 
low-temperature technique described earlier.13J4 Al- 
though the in situ crystallization of cyclopropene (mp 126 
K) was performed successfully a t  104 K, further cooling 
led to a solid-solid phase transition, and the crystal was 
damaged. The molecule was found to be disordered or 
twinned on a 3-fold axis, and the carbon-carbon dis- 
tances (1.414(3) A) represent a mean value between the 
expected double and single bond distances. Further 
refinement was not possible. Efforts to carry out struc- 
tural studies using either 3b or 3c were not undertaken. 

In the case of 3-vinylcyclopropene (mp -92 " C )  it was 
possible to secure good structural information by X-ray 
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Figure 1. Molecular structure of 3d. The ellipsoids are drawn 
at the 50% level. 

Table 1. Interatomic Distances and Angles for 3d 

compd a ( A )  b (A) c (A) ref 
3d 1.279 1.516 1.476 this work 
7 1.290 1.512 1.503 3 

A (A) -0.011 f0 .004  -0.027 u = 0.001 A 
5 1.499 1.515 1.473 15 
6 1.505 1.505 1.492 15 

A (A) -0.006 +0.010 -0.019 u = 0.001 A 

crystallography. To the best of our knowledge, this is 
the first time that the X-ray crystal structure of a simple 
cyclopropene has been determined. The molecular struc- 
ture and bond distances and angles are presented in 
Figure 1 and Table 1, respectively. The structural 
parameters of 3d are compared in Table 2 with those 
determined for t,he structurally related compounds 5-7. 

U -  124.3' a-124.7' 

3d 5 6 7 

The most striking feature of the bond lengths found 
for 3d is the shortening of bonds a and c and a lengthen- 
ing of bond b. This may be attributed to the presence of 
n(C=C)-x(Walsh) conjugation, as observed earlier by 
Nijveldt and V0s15 for vinylcyclopropane 5 (Table 2). The 
effect is not observed in 6 where both cyclopropyl bonds 
are the same length. The Jt(C=C)-n(Walsh) interaction 
is probably common for most vinylcyclopropanes and 
vinylcyclopropenes in the bisected conformation and also 
accounts for the short double bond in 3d (1.279 A) as 
compared to the significantly longer cyclopropenyl double 
bonds in 7 (1.290 A through-space interaction 
between the two double bonds in 3-vinylcyclopropene 
could not be detected from the bond lengths and angles 
(a = 124.3 in 3d versus 124.7 in 5 )  or in the X-X electron 
density maps (Figure 2). 

Structures for 3-vinylcyclopropene calculated using a 
variety of methods at  different levels are summarized in 
Table 3. Although the distortions associated with cyclo- 
propenes are usually better described with diffused- 
polarized basis sets (6-31++G**), replication of the 

(15) Nijveldt, D.; Vos, A. Acta Crystallogr. 1988, B44, 281; 1988, 
B44, 289; 1988, B44, 296. 

Figure 2. X-X electron density difference maps for 3d, posi- 
tive and zero contour lines are drawn at distances of 0.05 eA-3, 
negative are dashed at distances of 0.1 eA-3, the sections for 
the maps A-D are displayed in the perspective view of the 
molecule. 

Table 3. Calculated Bond Lengths and Angles for 3d 
atoms AM1 STO-3G 3-21G* 6-31G* 6-31++G** exut 

C(l)-C(2) 1.312 1.277 1.282 1.275 1.275 1.279 
C(l)-C(3) 1.491 1.499 1.527 1.500 1.502 1.516 
C(3)-C(4) 1.476 1.513 1.481 1.490 1.489 1.476 
c i 4 j - c i ~ j  1.329 1.310 1.318 1.320 1.322 1.330 
C(l)-H(l) 1.073 1.075 1.059 1.068 1.068 
C(3)-H(2) 1.108 1.089 1.076 1.084 1.083 
C(4)-H(3) 1.096 1.085 1.076 1.080 1.080 
c k j - ~ i 4 j  1.086 1.081 1.073 1.075 1.076 
C(5)-H(5) 1.087 1.081 1.075 1.077 1.078 
C(l)-C(2)-C(3) 63.9 64.8 65.2 64.9 64.9 65.0 
C(l)-C(3)-C(2) 52.2 50.4 49.7 50.3 50.2 49.9 
C(l)-C(3)-C(4) 119.7 121.5 119.7 121.4 121.2 121.1 
C(3)-C(4)-C(5) 122.4 124.1 124.8 124.6 124.6 124.3 

experimental results can be achieved reasonably well a t  
a lower level of theory in this case.16 

Future studies will include structure determination of 
other cyclopropenyl compounds. 
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